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2AbstractThe Boussinesq system describes weakly nonlinear dispersive long wavesin plasmas and incompressible irrotational 
uids. This study presents someresults regarding the structure and behavior of a system of equations thatyield the spatial structure of triad interactions in the Boussinesq system.Such a system forms part of a model for the formation and evolution of sandridges on the continental shelf. The aims of this study are to provide someinsight into the behavior of the triad system and into the sand ridge modelin particular.



31 IntroductionA model for the formation and evolution of three-dimensional longshore sand ridgeson the continental shelf was proposed in [1] and [2]. It identi�es weakly nonlinear,dispersive shallow-water waves as the agents of formation of these structures. Itis assumed that the waves travel mainly perpendicular to the shore (i.e., in the xdirection) and have weak spanwise y dependence, thusy  �1=2y ŷ�u ��1=2ŷ�u: (1)These waves, for bottom topographies h = 1+"f(xy) with very slight slope changes(i.e., "� 1), are governed by the dimensionless regularized Boussinesq system�t +r�[(h+ ��)u]� 13�2r�[r(h2�t)] = 0ut + �(u�r)u+r� = 0; (2)where �(x; y) is the amplitude and u(x; y) is the velocity of the water waves. Theparameters �� 1 and �2� 1 are the degree of nonlinearity and dispersion in thewaves, respectively. The bottom evolution is given by@@T h(x; y; T ) = K�0 (Ux + Vy)h(x; y; 0) = H(x; y); (3)where U and V are the longshore and spanwise drift velocity components in theboundary layer and are themselves functions of the water wave amplitude.In order to study the model's behavior and predictive qualities, the dynamics of



4the surface waves were simpli�ed by assuming a crude but still very usefull ansatzu(x;X; y; t) = P2j=1[aj(X; y) + �Aj(X; y)]ei(kjx�!j t) + c:c:+P2j=1[bj(X; y) + �Bj(X; y)]ei(�kjx�!jt) + c:c:; (4)where c.c. stands for complex conjugate of the expression immediately precedingits appearance. The a's are the complex incident wave amplitudes, and the b'sare the complex re
ected wave amplitudes. The reality of the physical variablesimplies that a�j = a?j and b�j = b?j . The spanwise velocity at the surface isv(x;X; y; t) = P2j=1� ikj [ajy(X; y) +O(�)]ei(kjx�!jt) + c:c:+P2j=1� ikj [bjy(X; y) +O(�)]ei(�kjx�!jt) + c:c: (5)To lowest order, u0t + �0x = 0. Hence, an expression for the surface amplitude isreadily available:�0 = 1Xj=1 !jkj [aj(X; y) + �Aj(X; y)]ei(kjx�!jt) + c:c:+ 1Xj=1 !jkj [bj(X; y) + �Bj(X; y)]ei(�kjx�!jt) + c:c: (6)A solution of the form given by Equations (4), (5), and (6) is valid, provided thatthe following relation holds between the frequency ! and the wavenumber k:!2j � k2j1 + �2 k2j3 = 0; (7)which gives the dispersion relation for the j-th mode, the positive root kj corre-sponding to the shoreward-directed wave, and the negative to the seaward wave.



5In addition, a compatibility condition must be satis�ed, which then yields theequations for the spatial evolution of the surface modes, namely,a1x � iK1a1yy + iK3f(x; y)a1 + iK5e�i�xa?1a2 = 0a2x � iK2a2yy + iK4f(x; y)a2+ iK6e+i�xa21 = 0b1x + iK1b1yy � iK3f(x; y)b1 � iK5e+i�xb?1b2 = 0b2x + iK2b2yy � iK4f(x; y)b2 � iK6e�i�xb21 = 0a1(x = 0; y) = A1(y)a2(x = 0; y) = A2(y)b1(x =M;y) = B1(y)b2(x =M;y) = B2(y) (8)
plus appropriate boundary conditions on y = 0 and y = N . The real K and Lconstant coe�cients are O(�; "); they are described in [1] and [2] and given in theappendix. The real parameter � � 0 is the detuning from perfect resonance, thatis, !2 = 2!1 and k2 = 2k1 � �.If the boundary conditions B1 and B2 of the re
ected wave are small, the re-
ected component is negligible. The triad system is thena1x � iK1a1yy + iK3f(x; y)a1+ iK5e�i�xa?1a2 = 0a2x � iK2a2yy + iK4f(x; y)a2 + iK6e+i�xa21 = 0a1(x = 0; y) = A1(y)a2(x = 0; y) = A2(y): (9)This study is devoted to the formal and analytical results relevant to discerning



6the behavior and structure of the triad system, Equation (9). Although the linearpart of the triad system is similar to its counterpart in the nonlinear Schr�odingerequation, the nonlinear terms endow the Equation (9) with properties and behaviormuch unlike the nonlinear Schr�odinger equation.To give the reader an idea of the rich structure of the triad system, we solveEquation (9) in the following examples using periodic boundary conditions in y.The bottom is 
at in all the examples; that is, f(x; y) = 0. The graphs weregenerated by using the �xed-point method [3], in which the linear operator isdiscretized using the Douglas scheme. The discretization yields a Jacobi matrix. Inthe graphs, two periods in y are plotted in tandem, the calculation being performedon only one of the two periods. The domain has M = 240 and N = 150, whereM and N are respectively the length in x and breadth in y, and the fundamentalfrequency used was !1 = 1:2. The parameters were � = 0:1 and � = 0:18. Thesolution to the case with boundary conditions A1 = 0:5+0:1 sin( 3N �y) and A2 = 0,with � 6= 0, is illustrated in Figure 1. For the same parameters, but with theboundary condition A1 = 0:1 sin( 3N�y), the outcome is shown in Figure 2. Figure3 shows the outcome when � has been forced to zero. Finally, Figure 4 illustratesthe case with quasi-periodic boundary conditions A1 = 0:1[sin( 3N �y) + sin( 8N�y)]and A2 = 0, with the same parameter values as in Figure 3, except that � 6= 0.The numerical solution of these examples suggest that solutions to the triad systemmay be stable and periodic.
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Figure 1: a1(x; y) for A1 = 0:5 + 0:1 sin( 3N�y), A2 = 0, and � 6= 0.2 Hamiltonian Structure of the Triad SystemWe adopt the following scaling,x K5(K6E0)1=2x y  K1=25 (K6E0)1=4y �Q �K5(K6E0)1=2u p2a1(K5E0)1=2 v  p2a2(K6E0)1=2 ; (10)in order to facilitate the derivation of the Hamiltonian structure of the triad sys-tems. With compact support in the y direction for both u and v and a 
at bottom(i.e., h = 1), the system isux � iK1uyy + ie�i�Qxu?v = 0vx � iK2vyy + ie+i�Qxu2=2 = 0: (11)
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Figure 2: a1(x; y) for A1 = 0:1 sin( 3N �y), A2 = 0, and � 6= 0.The Lagrangian density is found to beL = iuxu? � iu?xu+ ivxv? � iv?xv �<[(u?)2ve�i�Qx]�K1ju2yj �K2jv2yj; (12)where < stands for \the real part of", and the canonical momenta are�1 = @L@ux = iu?�2 = @L@vx = iv?�?1 = @L@u?x = iu�?2 = @L@v?x = iv: (13)



9
10

20

30

40

50

25

50

75

100

0

0.025

0.05

0.075

0.1

10

20

30

40

50

25

50

75

100

0

025

.05

75

1

Figure 3: a1(x; y) for boundary conditions A1 = 0:1 sin( 3N �y), A2 = 0, and detun-ing parameter � = 0.The requirement that L = R Ldy be stationary yields the Euler-Lagrange equations,which in turn lead to (11):@L@u? � ddy @L@u?y = iux +K1uyy � e�i�Qxu?v = 0@L@v? � ddy @L@v?y = ivx +K2vyy � e+i�Qxu2=2 = 0 (14)and its complex conjugates. The Hamiltonian H and its density H are given byH = Z HdyH = <[(u?)2ve�i�Qx] +K1juy j2 +K2jvy j2: (15)
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Figure 4: Solution for quasi-periodic boundary conditions: A1 = 0:1[sin( 3N�y) +sin( 8N�y)], and A2 = 0. � 6= 0.Note that the Hamiltonian is not conserved, that is,@L@x = �@H@x 6= 0; (16)except when �Q = 0. The Hamiltonian, in terms of the conjugate momenta, isH = �i<[�21�?2e�i�Qx] +K1j�1y j2 +K2j�2y j2: (17)The Hamiltonian admits a Poisson structure, de�ning the Poisson bracket asfA;Bg � Z dy[@A@u @B@�1 � @A@�1 @B@u ] + c:c:+ Z dy[@A@v @B@�2 � @A@�2 @B@v ] + c:c: (18)



11so that the evolution of a dynamical variable A is given byAx = fA;Hg: (19)In fact, Equation (11) is recovered ifA is replaced by u and v in the above equation:ux = fu;Hg = @H@�1 = �i�1�?2e�i�Qx ��?1yy= iu?ve�i�Qx + iuyyvx = fv;Hg = @H@�2 = �i(�?1)2e+i�Qx=2 ��?2yy= iu2e+i�Qx=2 + ivyy: (20)In addition, �1x = f�1;Hg = �@H@u�2x = f�2;Hg = �@H@v (21)yield the complex conjugate equations.Equation (11) may be recast in the form of an autonomous system. For such asystem, the Hamiltonian is a conserved quantity. Let ~v = ve�i�Qx, and substitutein Equation (11), resulting in ux � iK1uyy + iu?~v = 0~vx � iK2~vyy + i�Q~v + iu2=2 = 0: (22)



12The Hamiltonian corresponding to Equation (22) is~H = <[(u?)2~v] +K1juy j2 +K2j~vy j2 +�Qj~v j2=2: (23)As a check: ux = fu;Hg = �@H@u? = �iu?~v + iK1uyy~vx = f~v;Hg = �@H@~v? = �i�Q~v � iu2=2 + iK2vyy: (24)Hence, the above substitution leads to a Hamiltonian with the propertydHdx = 0 (25)for any �Q.When wavelike solutions are assumed to exist, another conserved quantity ofthis Hamiltonian system is12(ju j2 + j~v j2)x = �=(K1uyu? +K2~vy~v?)y; (26)where = reads as \the imaginary part of."



133 Linear Stability AnalysisThe stability of the triad system to small perturbations may be inferred by slightlyperturbing the system. Leta1(x; y) = �(x) + �(x; y)a2(x; y) =  (x) + �(x; y); (27)where j� j, j� j are both small. Further, assume f(x; y) = f(x). SubstitutingEquation (27) into Equation (9) leads to the linear system�x � iK1�yy + iK3f(x)� + iK5e�i�x(�?� +  �?) = 0�x � iK2�yy + iK4f(x)� + i2K6ei�x�� = 0; (28)with �x + iK3f(x)�+ iK5e�i�x�? = 0 x + iK4f(x) + iK6ei�x�2 = 0: (29)Separating the real and imaginary parts, let� = w + it� = q + ir; (30)



14and de�ne �1 =  r sin �x�  i cos �x�2 =  i sin �x+  r cos �x�3 = �r sin �x+ �i cos �x�4 = �i sin �x� �r cos �x; (31)where the subscripts r and i refer to the real and imaginary part, respectively, ofthe quantity.If we substitute Equation (30) and Equation (31) into Equation (28), the systemis now ux �A � @yyu +B � f(x)u+C � u = 0; (32)with u = [w; t; q; r]T and the matricesA = 0BBBBBBBBBBB@ 0 �K1 0 0K1 0 0 00 0 0 �K20 0 K2 0 1CCCCCCCCCCCA ; (33)
B = 0BBBBBBBBBBB@ 0 �K3 0 0K3 0 0 00 0 0 �K40 0 K4 0 1CCCCCCCCCCCA ; (34)



15which are constant, andC = 0BBBBBBBBBBB@ K5�1 K5�2 K5�3 K5�4K5�2 �K5�1 �K5�4 K5�32K6�3 2K6�4 0 0�2K6�4 �2K6�3 0 0 1CCCCCCCCCCCA ; (35)which is a function of x. Assume a separable solution, that is, u = X(x)Y(y).Thus, u = Ue�i�y exp[�A ��x] exp[�B Z x f(s)ds � Z xC(s)ds]: (36)The vector U is constant whose value depends on the conditions at x = 0. It ishelpful in what follows to look at this solution in component form:w = U1e��1y exp[K1�22x] exp[K3 Z x f(s)ds � Z x C1(s)ds]t = U2e��2y exp[�K1�21x] exp[�K3 Z x f(s)ds � Z xC2(s)ds]q = U3e��3y exp[K2�24x] exp[K4 Z x f(s)ds � Z x C3(s)ds]r = U4e��4y exp[�K2�23x] exp[�K4 Z x f(s)ds � Z xC4(s)ds]: (37)It is apparent from these expressions that growth and decay from spanwise pertur-bations of the real part of the modes depend on the spectrum of their imaginarycounterparts, and vice versa. In the most general case the solutions will becomeunstable if any one of the following conditions is met:��1y +K1(�22 � �22)x+K3 Z x f(s)ds � Z xC1(s)ds > 0



16��2y +K1(�21 � �21)x�K3 Z x f(s)ds � Z xC2(s)ds > 0��3y +K2(�24 � �24)x+K4 Z x f(s)ds � Z xC3(s)ds > 0��4y +K2(�23 � �23)x�K4 Z x f(s)ds � Z xC4(s)ds > 0; (38)where �j = �j + i�j. Typically the system is prepared in such a way that t(x =0; y) = 0 and r(x = 0; y) = 0. When �j are purely real, the onset of instabilityoccurs when either K3 Z x f(s)ds� Z xC1(s)ds > 0; orK4 Z x f(s)ds� Z xC3(s)ds > 0: (39)Plots of C1 and C3 for f(x) = 0, A1 = 0:5, A2 = 0:01, and with parameters� = 0:1, � = 0:1, and !1 = 1:2 are shown in Figures 5 and 6.4 An Exactly-Solvable CaseWhen the bottom is 
at and the boundary conditions are constant, the triad systembecomes a1x + iK5e�i�xa?1a2 = 0a2x + iK6e+i�xa21 = 0a1(x = 0; y) = A1a2(x = 0; y) = A2; (40)where Aj are constants. The above system is familiar to the nonlinear opticscommunity; cf. [4]. In what follows we adapt some of the results of Brekhovskikh
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Figure 5: Typical values of C1, dashed line, and R xC1(s)ds, versus x, for a 
atbottom.and Goncharov [5] to the problem at hand.Letting ai = Ai(x) exp �i(x) in Equation (40), and replacingX = A2 sin
 (41)Y = A2 cos
 (42)Z = A21; (43)with 
 = 2�1 � �2 + �x, we obtain the statement of conservation of energyK5(X2 + Y 2) +K6Z = E0; (44)
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Figure 6: Typical values of C3, dashed line, and R xC3(s)ds, versus x, for a 
atbottom.and the equation dXdY = K5(X2 + 3Y 2)� �Y �E0(� � 2K5Y )X ; (45)which may be used to investigate the structure of the phase plane of A2. Thedynamics of A1 follow immediately from the conservation of the energy constraint,Equation (44). Three cases, depending on the size of the detuning parameter �,are investigated. A plot of the detuning parameter as a function of frequency and� is shown in Figure 7 for the dispersion relation given by!2 � k21 + 13�2k2 = 0; (46)where k2 = 2k1 � �, and !2 = 2!1. When �=2pE0 � 0, the phase plane isshown in Figure 8. Note that dX=dY = 0 and X = 0 give the two centers,
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 is then equal to �=2. From the imaginarypart of the original system, it may be deduced that the variation of 
 in this limitis described by 
x � 2K5E1=20 cos
 = 0: (47)The transition from the state sin
 = 1 to sin
 = �1 occurs along the limitingcircle. The distance x at which this transition occurs is in�nite, but it can beestimated by solving Equation (47). The solution is
 = tan�1[exp (�2K5E1=20 x) tan 
0]; (48)and hence an estimate of the spatial length at which the energy of the �rst mode
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Figure 8: Phase plane for A2 for � � 0. X axis is vertical.makes an almost complete transition to the second mode isL � 1=2K5E1=20 ; (49)which subsequently will be seen as related to the \interaction length." The varia-tion of the amplitude of A2 along Y = 0 may be discerned fromA2x = K5A22 � E0; (50)which is obtained by eliminating Z from Equation (40) and making use of theenergy relationship.The solution of Equation (50) isA2 = (E0=K5)1=2 tanh[K1=25 E1=20 (x� x0)]; (51)



21with A2 = (E0=K5)1=2 tanh[(K5E0)1=2x0]. At the beginning of the growth process,A1 � A2 so that sin 
 = 1 and the growth of the second mode is independent ofA2. With the solution of A2 in hand, using Equations (44) and the �rst expressionof Equation (40), we can show thatA1(x) = A1q1� tanh2[K1=25 E1=20 x0]sechqK5E0(x� x0): (52)From this solution we conclude that irreversible energy conversion takes place for� = 0. This solution is not stable, however, since the stationary states are reachedby motion along the limiting curve on the phase plane. The smallest of � invari-ably results in motion along homoclinic orbits with consequent oscillations in theamplitude of A1 and A2.For the case � 6= 0, but small compared to 2E1=20 , the curves have similarstructure to the case previously discussed. The phase is described by
x + � � 2K5E1=20 cos
 = 0: (53)Consequently, the interaction length is decreased:L = 1q4K5E1=20 � �2 : (54)With regard to the sand ridge model, the interaction length is correlated to theinter-bar spacing. From Equation (53) it is seen that the bar spacing will decreasefor higher frequencies in the water waves.The centers are now at (X;Y ) = (0; �6K5 [1�r1 + 12K5E0�2 ]), and the line Y = 0



22is no longer the line of symmetry. Also, the line Y = �6K5 does not generallyintersect the limiting circle, as can be seen in Figure 9. Instead of two pairs of
y

x

Figure 9: Phase plane for A2 for �=2E1=20 � 1. X axis is vertical.stationary solutions, only one is possible, and the energy is concentrated mainly inthe lower mode. The two modes interact weakly, and the spatial beats get smallerand shallower as the detuning paramenter is increased. In fact, when �=2E1=20 � 1,A1(x) � A1, and A2(0) = A2, the �rst two terms in Equation (53) are dominant,so that the phase is 
 = �x+ �=2: (55)Substituting the above expression into the second expression of Equation (40), wecan show that A2 = A2 + K6� A21 sin �x: (56)The phase portrait for this case is shown in Figure 10.
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Figure 10: Phase plane for A2 for �=2E1=20 � 1. X axis is vertical.We remark that of the three cases considered here, only the �rst two are physi-cally relevant to the sand ridge generation problem. The large detuning parametercase violates assumptions on the size of the wavenumber/frequency in the model.Much is to be learned about the triad system, however, from looking at the high-frequency case in some detail.When !1 is large (or, equivalently, when � is large), the amount of energy fromthe �rst mode transferred to the second one may be quite small. As was justmentioned, in this case the �rst mode has nearly constant amplitude. Assume thatthe boundary conditions are constant, i.e. aj(0) = Aj. Thus, a1(x) � A1, and thesecond mode expression of Equation (40) may be integrated, yieldinga2(x) = K6� A21e�x: (57)



24Substituting Equation (57) into the �rst mode equation, we geta1x(x) � iK5� a1jA21 je��x; (58)which can readily be integrated to yielda1(x) = A1e�x; (59)where � = K5K6=�jA21 j. Thus, a1(x) is approximately sinusoidal, with a wave-length proportional to jA21 j.For a non
at bottom, which is typical of the bottom topography in the oceansetting, an exact solution is not possible. Consider, however, the caseA1x �K5A1A2 sin
 + �1A1 = 0A2x +K6A21 sin
 + �2A2 = 0; (60)where �j represent constants. An analytical solution of this system is not possible,unless �1 = �2 = �, in which case, conservation of energy is given byK5A21 +K6A22 = E0e�2�x: (61)Introducing new variables X = ~XE1=20 e��xY = ~Y E1=20 e��x (62)



25and the reduced distance � = 2E1=20 (1� e��x)=�; (63)assuming � = 0, we obtain, using Equation (61) the system's phase plane equation2d ~Xd~Y = 1 � ~X2 � 3~Y 2~X ~Y ; (64)which has the same structure in the phase plane as that shown in Figure 8. Theimportant distinction is that � is related nonlinearly to x. Thus, the damping ofthe waves is characterized by ~� = �=(2K5E1=20 ): (65)For ~� � 1, there is weak damping, and the waves travel a considerable distancebefore the energy is fully dissipated. On the other hand, if ~�� 1, only a small arcof the trajectory in phase plane is traversed. The wave substantially attenuates ina short distance. The relevant case, at least approximately, to the oceanic problemis the former case, in which the size of the bottom makes the coe�cient analogousto � in the above presentation of O(�) in size relative to the other terms in Equa-tion (60). We can infer from this result that milder average slopes in the bottomtopography favor the formation of sand ridge �elds with many bars and that theseparation between the bars becomes shorter as the waves shoal.The solution for small �Q and large �Q is graphically depicted in Figure 11. In
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Figure 11: ja2 j2 dependence on the detuning parameter. In all cases ja1 j2(x =0) = 1. The interaction length and the power transferred to ja2 j2 decreases as �Qincreases.the �rst case, the interaction length is relatively insensitive to �Q and substantialpower transfer occurs, the interaction length is very large. On the other hand, for�Q� 1, there is less power transfer and the interaction length is shorter. Figure12 shows how the interaction length varies nonlinearly with �Q. Figures 13 and14 illustrate the dependence of the interaction length on the size of the nonlinearparameter � and the dispersion parameter �. The relevant size of the parameters �and � in the sand ridge case is as high as 0:15 for � and 0:005 < � < 0:15. Hence,from the graphs it may be inferred that the interaction length is more sensitive todispersion than to nonlinearity for the above-mentioned ranges of � and �.
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Figure 12: Interaction length dependence on the nonlinear parameter �Q. Thedetuning parameter is scaled so that as �Q! 0, m! 1.5 High-Frequency BehaviorAs a way to assess the evolution of waves with periodicity in the longshore direction,suppose a1(x; y) = u(x; y)ei(k1x�!1t+l1y)a2(x; y) = v(x; y)ei(k2x�!2t+l2y) (66)Then the system (9) is nowux + il21K1u+ iK5u?ve�i(
y+�x) = 0 (67)vx + il22K2v + iK6u2e+i(
y+�x) = 0; (68)
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Figure 13: Interaction length dependence on the nonlinear parameter �.where 
 = l2 � 2l1, which can be zero. We now consider the high-frequency case.For !1 large, u(x; y) � u0. Hence Equation (68) may be integrated, yieldingv = �K6u2ei(
y+�x)� + l22K2 ; (69)assuming v(x = 0; y) = 0 and u(x = 0; y) = u0 constant. Using this expression inEquation (67), we haveu(x; y) = u0 exp[�il21K1x+ iK5K6ju0 j2x� + l22 ]: (70)Hence v oscillates with lines of constant phase normal to the tan�1(
� ) direction,where the angle is taken with respect to the shoreward direction. When l2 = 2l1exactly, the direction of constant phase orthogonals is the shoreward direction. On
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Figure 14: Interaction length dependence on the dispersion parameter �.the other hand, u oscillates in the x direction, with a repetition lengthL
 = � + l22K22� fK5K6ju0 j2 � (� + l22K2)l21K1g�1: (71)Furthermore, v can develop a singularity when� + l22K2 = 0; (72)that is, when l2 = �q��=K2 (note that � � 0). In terms of the y component ofthe wavenumber, the singularity occurs whenl2 = �s�2�k2� : (73)



30An l2 of such value is not at all unreasonable to consider. There is a change in signin v on either side of the location at which the singularity is predicted.Yet another interesting feature is the situation whenju0 j2 = (� + l22K2)l21K1=K5K6; (74)again, a reasonable value. In such an event, the modulation of u practically disap-pears. Then u(x; y) � u0 = �q(� + l22K2)l21K1=K5K6 (75)and v(x; y) = � l21K1ei(�x+
y)K5 ; (76)which is a simple sine wave. Hence, one could conceivably use modulations in they direction to nonlinearly produce linear sine wave signals of the second harmonicwith amplitude given by l21. If l2 = 2l1 exactly, the wave oscillates in the shorewarddirection.Carrying out this high-frequency analysis further, we can consider the e�ect ofthe bottom topography under special circumstances: the case when f(x; y) = f(y)leads in a straightforward manner tov = � K6u2ei(
y+�x)� + l22K2 +K4f(y) ; (77)



31again assuming v(x = 0; y) = 0 and u(x = 0; y) = u0 constant, andu(x; y) = u0 exp[�il21K1x+ i K5K6ju0 j2x� +K2l22 +K4f(y) ]: (78)Thus, the e�ect of the bottom in this case is to change the amplitude of v and, atthe same time, modulate the oscillations of u. Again, the possibility of a singularityand a change in sign in v exists.Finally, the same method may be employed to assess the e�ect of a mildlysloping bottom on the high-frequency solution. Assume f(x; y) = �x=2, where �is small. The same procedure leads tov � �(u0)2K6ei(
y+�x)� +K2l22[1� i 2K4�(� +K2l22)2f(� +K2l22)2x2=2 + i(� +K2l22)x� 1g]e�iK4�x2u � u0 expf�i(K1l21� ju0 j2K5K6(� +K2l22)2 )x� i(K3 � ju0 j2K4K5K6(� +K2l22)2 )�x2gexp�2ju0 j2K4K5K6�(� +K2l22)3 (x� (� +K2l22)2x22 ): (79)The result is valid only for K4�x2 � 1. That is, since K4 is of the same order ask2", it is valid for x � O(1=pk2"�). To discern what is fundamentally di�erentabout the sloping case, consider the situation in which u0 has no y dependence, sothat Equation (79) has the formv � �(u0)2K6ei�x�



32[1� i2K4��2 (�2x22 � i�x� 1)]e�iK4�x2u � u0 expfiju0 j2K5K6x=� � i(K3 � ju0 j2K4K5K6�2 )�x2ge�2ju0 j2K4K5K6��3 (x��2x2=2): (80)From Equation (80) it is readily apparent that v oscillates proportionally to ei�x,its maximum amplitude �=K6 times smaller than u2. The phase will drift quadrat-ically with distance and proportionally to K4�. The amplitude drops linearly at arate proportional to the size of K4� and K3�; the wave decays exponentially at arate controlled by the last exponential in the above expression. To properly inter-pret the decay, recall that j� j � 1 and � is strictly negative in this analysis. Thesecond term in the exponential implies that decay/blow up would be a possibleoutcome of the original model. However, this is an arti�ce of the present analysis.If the assumption u(x) � constant is violated, the above expressions are not valid.Thus, for our interpretation to be valid, it is required that 2ju j2K4K5K6�x=�3� 1.A very important question that arises in the applicability of slightly resonant in-teracting triad expansion techniques to oceanic waves is that we may be neglectingvery important side-band modulations. These can be producing interesting struc-ture, controlling the stability of the primary waves, or a�ecting very minimally thestructure of the evolving waves. A general result on this issue is forthcoming, butfor now we limit our attention to the high-frequency case. The problem of bands,rather than isolated modes, and the e�ect on the evolution of individual waves hasbeen examined by Hasselmann [6] in the context of deep oceanic waves. Appli-



33cable to the shallow water case considered here, Brekhovskikh and Goncharov [5]examined this issue, and in what follows their �ndings are paraphrased.First, the modal expansion is replaced by the more familiar expression for thelowest-order velocity u0(x; t) = Z 1�1 a!(x)e�i!td!; (81)where a!(x) � a(x!), and a?!(x) = a�!(x) since u0 is real. Assume a! =�! exp(ik!x), where k! = k(!) is found by the dispersion relation. Again, re-ality means that k?! = k�! and �?! = ��! . Substituting Equation (81) into theoriginal equations and using the compatibility conditions, we obtain an expressionfor the amplitude of the incident waves:@@x�! = �i�! Z 1�1 �q�s exp(�i�qs!x)dq; (82)where s = ! � q and �qs! = q + s� k! . If the incoming harmonic wave u(0; t) =a1(0)e�i!1t + c:c: (i.e., �!(0) = a1(0)�(! � !1) + a?1(0)�(! + !1)), the spectrum ofu(x; t) remains discrete at any time; the only nonzero components are !n = n!1,kn = k(!n); n = �1;�2; � � �, anda!(x) =Xn an(x)�(! � !n): (83)Then Equation (82) yields@@xan = �i�!nXm amale�i�mlnx; (84)



34l = n �m, �mln = km + kl � kn, an = a?n, and a0 = 0.Taking !1 as the principal harmonic and �! as the width of the spectral band,we extend Equation (40) to include the interactions of spectral components of thewave train with long-wavelength waves. Except for a constant multiplying theintegral, the spectral amplitude equation is@@x�(!) = �i�! Z�![�!1+��!�!1��ei�+x + ��!1+��!+!1+�ei��x]d�;�� = k! � k!1+� � k!1+��! � k! � k!1 � dkd! j!1�;�k!1 � dkd! j!1(� � !) = k! � c�1g ! = [c�1ph (0) � c�1g ]! = �!; (85)where cg is the group velocity and cph is the phase velocity. Approximating, wehave �!1+� � �!1+!+� � �!1 ;��!1+!+� � ��!1+� � ��!1; (86)and the equation for the amplitude is@@x�! � �i�!j�!1 j2ei�!x�!: (87)As was done in the discrete case, assume the frequency is su�ciently high so that�!1 � constant. Thus,�!(x) � �� !�! j�!1 j2ei�!x�! = ��j�!1 j2ei�!x�![c�1ph (0)� c�1g (!1)]: (88)



35The following equation for �! corresponds to such an interaction:�! = �i�! Z�! ���!��e�i��xd� � i�2!1j�!1 j2�!(�!)2[c�1ph (0) � c�1g (!1)] ; (89)where j! � !1 j � �! . Let a1 = �!�! stand for the amplitude of the principalharmonic. Then, taking into account the term corresponding to the interactionswith the second harmonic, we obtain, instead of Equation (58),@@xa1 = i�2!2ja1 j2f��1 + !�1[c�1ph (0) � c�1g (!1)]�1ga1: (90)Its solution is a1 = a1(0)ei�x, corresponding to waves with \spatial" shift of � =��2!2ja1 j2f��1+!�1[c�1ph (0)�c�1g (!1)]�1g. Hence, in the high frequency the maindi�erence between the discrete and the banded spectrum case is that the latter hasan additional term in the nonlinear shift as compared with the case of Equation(58).The conditions for the stability of the triad system and of the full model, as ofthis writing, have not been analyzed in detail. However, it is possible to infer fromthe results of this section that the stability of the triad system does not depend onthe frequency of the water waves since only weak resonance is possible, which inturn means that less energy is shifted from the lower modes to the higher ones thehigher the frequency of the fundamental mode.



366 Conclusions and Suggestions for Further Re-searchThe triad system that forms part of a model for the formation and evolution ofsand ridges is rich in mathematical structure. It is clear from our results that wehave only begun to understand the full meaning of the system.The high-frequency regime of the system has been considered in greater de-tail here because results from similar problems, primarily by the nonlinear opticscommunity, were easily adaptable to our case. The low-frequency regime, which ismore relevant to the sand ridge problem, was considered only in cursory fashion.Hence, future work will be aimed at gaining a better understanding of the systemin the low-frequency regime.Several issues require our immediate attention. First, we need to further ourunderstanding of the refractive behavior of the waves under the action of a fullyfeatured bottom. As shown in [1] and [2], there are a number of ways in whichrefraction occurs in the surface waves. The model's assumptions place a restrictionon the degree of spanwise dependence of the solutions, and care must be exercisedso as to not violate the assumption, especially when the domain involved is large.It may be possible, however, even when weak y dependence assumptions are notviolated, for the solutions to lose their stability as a result of severe refraction.At a later stage in this study we shall pursue this issue, with the hopes of ar-riving at an estimate of when and how this form of instability occurs. Second, acomprehensive stability analysis is needed. Evidence from numerical calculationsand of our preliminary analytical work on the subject suggests that the stability is



37controlled by the possibility of a singularity in the denominators of the coe�cientsK5 and K6, by the right combination of parameters (see Figures 15 and 16) orby the choice of boundary conditions Ai. Third, we need to prove the existenceand uniqueness of solutions of the system. Fourth, we need to study propertiesrelated to the system's Hamiltonian structure. In our preliminary work we foundno evidence of complete integrability. And �fth, we need a thorough study of theissue of resonance between the surface waves and the bottom topography.Regarding the full sand ridge model, the most interesting issue is the studyof steady state bottom con�gurations. Preliminary results exist for the two-dimensional case [7]; however, this case is far from fully explored. The three-dimensional case has received no attention.Further developments on the sand ridge model are planned. In particular, workis under way to couple the mass transport equation to a full Boussinesq system,the aim being to consider more realistic water wave spectra as agents of order forthe bottom topography. Additionally, we plan to consider a mass transport modelthat enables the inclusion of shear stresses.On the experimental side, work is under way to compare the model presentedin this series of papers with �eld data gathered in Eastern Australia and o� thecoast of Newfoundland.
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40K3 = D1E1K4 = D2E2K5 = D1S1K6 = D2S2 (91)with Dj = [2(1� �2!2j3 )]�1Ej = kj(1 � 23�2!2j )Fj = 1=2kjS1 = k2�k1!1 fk2 � k1 + !1(!1k1 + !2k2 )gS2 = 2(k21=+ 2!21)=!2: (92)The constants K5 and K6 are illustrated in Figures 15 and 16, respectively.
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